Zigzags, Railroads, and Knots in Fullerenes

نویسندگان

  • Michel Deza
  • Mathieu Dutour Sikiric
  • Patrick W. Fowler
چکیده

Two connections between fullerene structures and alternating knots are established. Knots may appear in two ways: from zigzags, i.e., circuits (possibly self-intersecting) of edges running alternately left and right at successive vertices, and from railroads, i.e., circuits (possibly self-intersecting) of edge-sharing hexagonal faces, such that the shared edges occur in opposite pairs. A z-knot fullerene has only a single zigzag, doubly covering all edges: in the range investigated (n /= 38, all chiral, belonging to groups C(1), C(2), C(3), D(3), or D(5). An r-knot fullerene has a railroad corresponding to the projection of a nontrivial knot: examples are found for C(52) (trefoil), C(54) (figure-of-eight or Flemish knot), and, with isolated pentagons, at C(96), C(104), C(108), C(112), C(114). Statistics on the occurrence of z-knots and of z-vectors of various kinds, z-uniform, z-transitive, and z-balanced, are presented for trivalent polyhedra, general fullerenes, and isolated-pentagon fullerenes, along with examples with self-intersecting railroads and r-knots. In a subset of z-knot fullerenes, so-called minimal knots, the unique zigzag defines a specific Kekulé structure in which double bonds lie on lines of longitude and single bonds on lines of latitude of the approximate sphere defined by the polyhedron vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Structure of Chemistry-relevant Graphs: zigzags and central circuits

Springer 2 This book is a companion to our book [DeDu08], which considered the notions of polycycles, face-regularity and weak face-regularity of plane graphs and toroidal maps. The central actors in the present monograph are the zigzags and central-circuits of 3-or 4-regular plane graphs, which allow to obtain a double covering or covering of the edge-set. This study is mainly focused on speci...

متن کامل

Zigzag Structures of Simple Two-Faced Polyhedra

A zigzag in a plane graph is a circuit of edges, such that any two, but no three, consecutive edges belong to the same face. A railroad in a plane graph is a circuit of hexagonal faces, such that any hexagon is adjacent to its neighbors on opposite edges. A graph without a railroad is called tight. We consider the zigzag and railroad structures of general 3-valent plane graph and, especially, o...

متن کامل

Polyhedral Knots and Links

This paper contains a survey of different methods for generating knots and links based on geometric polyhedra, suitable for applications in chemistry, biology, architecture, sculpture (or jewelry). We describe several ways of obtaining 4-valent polyhedral graphs and their corresponding knots and links from geometrical polyhedra: midedge construction, cross-curve and double-line covering, and ed...

متن کامل

Circular Binary Strings without Zigzags

We study several enumerative properties of the set of all circular binary strings without zigzags and of the set of all (0, 1)-necklaces without zigzags, where a zigzag is a 1 followed and preceded by a 0 or a 0 followed and preceded by a 1.

متن کامل

A comparative study of knotting decorations and knot tools Used in Ghaffarieh and Kabud domes of Maragheh city

Knotting is one of the most regular geometric decorations that spread with the spread of Islam. Among the different Islamic governments, the Ilkhani era is one of the most brilliant periods of prosperity and flourishing of art and architecture with the use of knot-making in Iran. Among the magnificent buildings of this period are Kabud Dome and Ghaffarieh Dome, located in Maragheh city, the ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2004